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Abstract
In this paper, we study optimal control and communication schedule co-design
for multi-agent networked control systems, with assuming shared paral-
lel communication channels and uncertain constrained linear time-invariant
discrete-time systems. To that end, we specify the communication demand for
each system using an associated robust control invariant set and reachability
analysis. We use these communication demands and invariant sets to formulate
tube-based model predictive control and offline/online communication sched-
ule co-design problems. Since the scheduling part includes an infinite dimension
integer problem, we propose heuristics to find suboptimal solutions that guar-
antee robust constraints satisfaction and recursive feasibility. The effectiveness
of our approach is illustrated through numerical simulations.
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1 INTRODUCTION

A networked control system (NCS) is a set of control loops closed over a communication network. While this entails
advantages such as reduced wiring, lower cost, and more flexibility and maintainability of the system, it also causes some
disadvantages, such as information losses and delays, which may degrade the performance or cause instability.1 All these
issues become even more challenging in a multi-agent setting, where the communication network is shared by multiple
agents and some degree of coordination is required in order to ensure that each agent obtains sufficient access to the
network. In the multi-agent setting, an important imperfection of the communication link in NCSs is therefore bandwidth
limitation.

In order to allocate communication resources to the agents, a medium access protocol is necessary to determine which
agents are allowed to communicate through the shared network at any given time. A medium access protocol can be
deterministic, stochastic, or combination of the two. Deterministic scheduling is advantageous from the control design
standpoint since it enables one to provide guarantees on the system performance. However, providing strong guarantees
over a wide range of operating points may cause over-provisioning. On the other hand, random access schemes, typi-
cally developed for those applications where the communication is sporadic, reduce the issue of over-provisioning, that
is, they potentially reduce the number of communication channels and the frequency of the communication by each
system. Although in a random access scheme transmissions might be postponed due to unavailability of the communica-
tion medium, the average amount of transmissions may be significantly reduced, while some overall closed-loop system
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performance, for example, ℒ2 stability, can be enforced.2 However, the use of random access schemes in safety-critical
applications makes it hard to guarantee satisfaction of state and input constraints at all times.

Previous work has focused on defining ways to relate the medium access protocol specifications to system the-
oretic properties. An important concept is the maximally allowable transmission interval (MATI), which establishes
an upper bound between two consecutive transmissions such that stability is guaranteed while accounting for the
maximum possible communication delays.3 This approach has been further extended to incorporate communication
constraints, time-varying transmission intervals, and time-varying delays.4 Additionally, the introduction of minimal
allowable transmission interval5 and average allowable transmission interval6 has been proposed to further improve the
existing framework. In self-triggered transmission schemes the next communication time is decided after each transmis-
sion based on a trade-off between control performance and communication utilization, using concepts similar to MATI.
This approach has been applied to constrained linear systems in order to reduce transmission while guaranteeing sta-
bility and constraint satisfaction.7 This scheme has been further extended to deal with constrained linear systems with
additive disturbance.8

All previously cited schemes aim to reduce the amount of transmissions while preserving stability. However, an alter-
native approach, based on rollout control, aims at maximizing control performance while restricting the communication
utilization according to a given traffic specification (TS). In window-based TS9,10 the number of transmissions are limited
during each window of time, and in token bucket TS11-13 a dynamic restriction is introduced to limit the transmission
rate. Token bucket and window-based TS schemes have been extended to constrained linear systems with additive dis-
turbance, in which a tube-based model predictive control (MPC) is used to guarantee robust satisfaction of state and
input constraints.13 This method relies on a robust control invariant (RCI) set that is Htime-steps invariant for the sys-
tem between consecutive transmissions. Therefore, the H-RCI property is a related concept to the MATI for constrained
discrete-time systems with additive disturbance.

All the aforementioned studies focus on a single system and, therefore, can deal with communication medium access
by assuming that the medium is available whenever the system requests it. In order to deal with multi-agent settings
in which the communication medium is shared between agents, some form of coordination (i.e., a medium access
protocol) needs to be introduced. A distributed dynamic schedule which gives priority to nodes which larger errors,
called “maximum-error-first with try-once-discard,ε has been proposed as network access protocol, using bit-wise arbi-
tration, for linear systems.14 Conflict-free transmissions for self-triggered schemes have also been proposed.15 While
the first two approaches decide on communication online, offline medium access protocols have been derived by
means of optimal control and schedule co-design. One possibility is to optimize the schedule and control to min-
imize an H∞ cost,16 where the schedule determines which sensor may transmit through the channel at any given
time. This optimization problem is solved by formulating a linear matrix inequality (LMI) and a heuristic method
for scheduling to avoid combinatorial complexity. In another contribution, the exponential convergence rate of sys-
tems is optimized in the presence of random packet losses using an LMI.17 A mixed integer quadratic program
over a finite time horizon is considered in Reference 18 for NCSs, where offline and online schedules are discussed
using branch and bound algorithms. However, solving this optimization problem in real time might not be viable
due to its combinatorial nature. This issue is addressed in Reference 19 where, given an offline schedule, a sub-
optimal online schedule called optimal pointer placement is introduced which is a shifted version of the offline
schedule. While these studies directly consider the medium access for NCSs, they do not account for state and input
constraints.

Scheduling and control for uncertain multi-agent constrained NCSs has been addressed using the concept of safe time
interval to provide access to the communication medium to the agents.20,21 The safe time interval plays a role similar to
H-RCI and MATI, but is used in a scheduling framework to coordinate the access to the medium for all agents. This is done
by mapping the scheduling problem into the Pinwheel Problem or the Windows Scheduling Problem (WSP), for which
a feasible schedule can be found with polynomial time algorithms when a sufficient schedulability condition holds. This
strategy guarantees satisfaction of the state and input constraints for all future times. This framework is able to deal with
packet losses and to adapt the schedule online to improve performance.21,22 Additionally, tube-based MPC can be used
to maximize the safe time interval for systems with additive perturbations.23 The main limitation of these approaches is
that they do not directly optimize closed-loop performance.

In this paper, we consider optimal communication schedule and control co-design for multi-agent NCSs with uncer-
tain constrained systems and bandwidth limitation by extending previous work,20-23 that is, by jointly designing the
control and the communication schedule through an optimization problem. This extension eliminates unnecessary
performance loss due to sequential schedule and control designs in the previous work.
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Because this optimization problem is prohibitively complex, we propose to approximate it by a heuristic in order to
find a suboptimal solution in real time. Additionally, this framework can compensate packet loss while guaranteeing
satisfaction of the constraints if the number of packet losses are bounded during a window of time.

The main contribution of this paper is a schedule and control co-design framework to optimize a given performance
index for constrained uncertain multi-agent NCSs. Because the optimization problem is often intractable, we propose a
heuristic with low computational burden that accounts for optimality in an approximate way while still providing strong
constraint satisfaction guarantees. The proposed heuristic restricts the scheduling search space to a finite set of feasible
schedules, which makes the co-design problem tractable.

The rest of this paper is organized as follows. Preliminary results are recalled in Section 2. Offline and online schedul-
ing optimization problems are introduced and heuristics are proposed in order to find suboptimal solutions in Section 3.
Some numerical examples are given in Section 4 to illustrate the proposed method and finally the paper is concluded in
Section 5.

Notation. We define the set of integer numbers between a and b as

b
a ∶= {x ∈ Z ∶ a ≤ x ≤ b}. (1)

We define 𝛿(t) ∶= (𝛿1(t), 𝛿2(t), … , 𝛿n𝛿
(t)) to be an ordered set of n𝛿 integers at time t, and the sequence

𝜹 ∶= (𝛿(0), 𝛿(1), 𝛿(2), …). (2)

Based on the sequence 𝜹, we define the set of time instants

Ti(𝜹) ∶= {t ∶ i ∈ 𝛿(t), t ≥ 0}, (3)

which indicates the times at which the integer i is a member of the set 𝛿(t). We call members of the set Ti(𝜹) as ti,0, ti,1, …
which are ordered increasingly, that is, ti,j < ti,j+1 for all j ≥ 0. The sum of two polyhedra P and Q is defined as

P ⊕ Q = {z ∶ z = p + q, p ∈ P, q ∈ Q}, (4)

and their difference as

P ⊖ Q = {z ∶ z + q ∈ P,∀q ∈ Q}. (5)

Set  ∶= (1, … ,q) is an ordered set of polytopes i ⊂ Rni for all i ∈ 
q
1 . The lexicographic optimization

lex max
x

(f1(x), … , fn(x)), (6)

specifies the optimizer x⋆ that satisfies

f1(x⋆) = max
x

f1(x), (7)

and

fi(x⋆) = max
x

fi(x) (8)

s.t. fj(x) = fj(x⋆), ∀j ∈  i−1
1 , (9)

for all i = 2, … ,n.

2 PRELIMINARIES

In this section, we consider an optimal communication schedule and control design problem for a class of multi-agent
NCSs.



4 BAHRAINI et al.

F I G U R E 1 Multi-agent networked control system configuration. At each time t only n𝛿 of state measurements xi(t) for all i ∈ 
q
1 ,

specified by the vector 𝛿(t), are transmitted through the communication medium. Each controller i ∈ 
q
1 uses its latest received state

measurement to compute ui(t), which is then applied to the system i

Consider an NCS, depicted in Figure 1, where q uncertain linear time invariant systems have decoupled dynamics

xi(t + 1) = Aixi(t) + Biui(t) + vi(t), ∀i ∈ 
q
1 , (10a)

xi(t) ∈ i ⊆ R
ni , ui(t) ∈ i ⊆ R

mi , vi(t) ∈ i ⊂ R
ni , ∀ t ≥ 0, ∀i ∈ 

q
1 , (10b)

where vi(t) is a bounded disturbance and xi(t), ui(t) are the system states and inputs, respectively. The controller is required
to enforce the state and input constraints xi(t) ∈ i and ui(t) ∈ i. We assume that the sets i, i, and i are compact
polytopes which contain the origin, and that the pair (Ai,Bi) is stabilizable.

We denote the communication schedule 𝛿(t) as a vector of n𝛿 integers, containing indices of the systems that
receive their state measurements at time t. With slight abuse of notation, we write i ∈ 𝛿(t) whenever 𝛿j(t) = i for some
j ∈ 

n𝛿

1 .
We note that, as it can be seen in Figure 1, the communication scheduler has access to the current state measurements,

that is, xi(t); however, the controller has only access to the state prediction

x̂i(t + 1) ∶=

{
xi(t + 1) if i ∈ 𝛿(t + 1) (connected)
Aix̂i(t) + Biui(t) if i ∉ 𝛿(t + 1) (disconnected)

, ∀i ∈ 
q
1 , t ∈ ∞

0 , (11)

with an initial condition x̂i(0) = xi(0). At each time instant t ≥ 0, the central scheduler selects n𝛿 sensors (through tuple
𝛿(t)) which transmit their measurements through the communication medium. Each controller i uses the state predic-
tion x̂i(t), updated as per (11), to compute the optimal control policy u⋆

i (t), which is then applied to the system i by its
actuator.

We aim at jointly designing the communication schedule and control for the described NCS by minimizing either
the worst-case or the nominal prediction of a given cost function. Note that for perturbed systems the worst-case cost
is in general unbounded. In order to address that issue, we define the worst-case cost as an average cost and the
deviation from the optimal average cost. The minimization is then performed in a hierarchical, or lexicographic man-
ner: minimizing the average cost is the most important objective and guarantees optimal operation over an infinite
horizon; minimizing the deviation from this average cost further optimizes the transient behavior which would other-
wise be neglected. These concepts are discussed in the literature on stochastic optimal control where further optimality
criteria are also proposed.24 For the sake of simplicity, we do not discuss them here, but remind the reader that
popular cost functions include the total discounted cost and/or using the expected value or any other statistical mea-
sure instead of the worst-case cost. Note, however, that this last option requires knowledge on the distribution of
the noise.
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For each system i we define the cost functions(
Javg

i (xi,0, x̂i,0,Ui,i, 𝜹), Jb
i (xi,0, x̂i,0,Ui,i, 𝜹)

)
∶= lex max

Vi
Ji(X̃i,Ui), (12a)

s.t. x̃i(t + 1) =

{
xi(t + 1) if i ∈ 𝛿(t + 1)
Aix̃i(t) + Biui(t) if i ∉ 𝛿(t + 1)

, t ∈ ∞
0 , (12b)

xi(t + 1) = Aixi(t) + Biui(t) + vi(t), t ∈ ∞
0 , (12c)

vi(t) ∈ i, t ∈ ∞
0 , (12d)

xi(0) = xi,0, (12e)

x̃i(0) = x̂i,0, (12f)

where xi,0 and x̂i,0 are the initial state and state prediction, respectively, and

Vi ∶= (vi(0), vi(1), …), Ui ∶= (ui(0),ui(1), …).

Since the disturbance sequence Vi is unknown, we introduce the variables xi and x̃i, which are the system state and the
predicted state for the worst-case disturbance, respectively.

Note that we optimize in a lexicographic order, that is, the optimization is performed first with respect to the first
element in vector Ji, then the next elements are optimized in a way which does not jeopardize optimality with respect to
the preceding elements, with the vector defined as

Ji(X̃i,Ui) ∶=

(
Ĵi(X̃i,Ui),

∞∑
t=0

(
x̃i(t)⊤Qix̃i(t) + ui(t)⊤Riui(t) − Ĵi(X̃i,Ui)

))
, (13)

Ĵi(X̃i,Ui) ∶= lim
T→∞

1
T

T∑
t=0

(x̃i(t)⊤Qix̃i(t) + ui(t)⊤Riui(t)), (14)

It ought to be stressed that, since we perform lexicographic optimization, the optimization of the second cost in
Ji(X̃i,Ui) includes an additional constraint enforcing that the first cost, that is, Ĵi(X̃i,Ui), is not worse than its previously
computed optimal value.

Remark 1. Optimization problem (12) yields the worst-case cost of a given communication schedule, control policy, and
initial conditions for the NCS. In case i ∶= i, the disturbance is not vanishing and the infinite horizon quadratic cost is
unbounded. This is the reason why we consider lexicographic optimization. The most important objective is to minimize
the average cost Ĵi, which is finite if the states and inputs remain bounded. This average cost is however independent
of transients, for example, any bounded deviation from the optimum over a finite time horizon averages to 0. In order
to also account for transient performance, we propose to optimize the second cost, which penalizes deviations from the
optimal average cost. Note that in the nominal case, that is, i ∶= {0}, we have Ĵi = 0 for any stabilizing policy, while the
secondary cost selects the optimal policy among all stabilizing ones.

The communication schedule and control design should guarantee satisfaction of the input and state constraints for
each system. To that end, we formulate the optimal communication schedule and control design using ideas from robust
min-max25 and tube-based MPC.26,27 We define U ∶= (U1, … ,Uq) and formulate the optimal communication schedule
and control design problem as

lex min
U,𝜹

( q∑
i=1

Javg
i (xi,0, x̂i,0,Ui,i, 𝜹),

q∑
i=1

Jb
i (xi,0, x̂i,0,Ui,i, 𝜹)

)
, (15a)

s.t. ui(t) ∈ i, ∀i ∈ 
q
1 , t ∈ ∞

0 , (15b)

x̂i(t) ∈ i ⊖ i(t), ∀i ∈ 
q
1 , t ∈ ∞

0 , (15c)
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x̂i(t + 1) =

{
xi(t + 1) if i ∈ 𝛿(t + 1)
Aix̂i(t) + Biui(t) if i ∉ 𝛿(t + 1)

, t ∈ ∞
0 , (15d)

i(t + 1) =

{
{0} i ∈ 𝛿(t + 1)
Aii(t)⊕ i i ∉ 𝛿(t + 1)

, ∀i ∈ 
q
1 , t ∈ ∞

0 , (15e)

x̂i(0) =

{
xi(0) if i ∈ 𝛿(0)
x̂i,0 if i ∉ 𝛿(0)

, ∀i ∈ 
q
1 , (15f)

i(0) =

{
{0} if i ∈ 𝛿(0)
i,0 if i ∉ 𝛿(0)

, ∀i ∈ 
q
1 . (15g)

Constraint (15c) is imposed to the problem in order to enforce the state constraint xi(t) ∈ i. Set i(t) is the reachable
set for the state prediction error. Indeed, one can verify that the state prediction error ei(t) ∶= xi(t) − x̂i(t) satisfies

ei(0) ∈ i(0) ⇒ ei(t) ∈ i(t), ∀t ≥ 0. (16)

Consistently, we define i,0 ∶= {ei(0)}. Set i(t) is used to tighten the state admissible set i in (15c) to account for the
effect of the unknown disturbance on the state evolution in time. This is clarified in the following lemma.

Lemma 1. The state constraint xi(t) ∈ i and (15c) are equivalent.

Proof. Equality xi(t) = ei(t) + x̂i(t) holds by definition and i(t) is the reachable set for ei(t). Therefore, the constraint
xi(t) ∈ i is equivalent to x̂i(t) + ei(t) ∈ i for all ei(t) ∈ i(t). This is equivalent to x̂i(t) ∈ (i ⊖ i(t)) by definition. ▪

Problem (15), defines a joint optimal communication schedule and control design that enforces the agents’ con-
straints (10b). Unfortunately, this optimization problem is impossible to solve since xi(t) is unknown for any t > 0;
furthermore, even if the states were known, the problem would be very difficult to solve since the schedule 𝜹 is an infi-
nite sequence of vectors, each containing n𝛿 integer variables. In order to resolve these issues, we use the following
definitions.

Consider the feedback policy ui(t) = −Kixi(t) for the system (10). Then, one can define positively invariant sets for the
system as follows.

Definition 1 (Robust positively invariant set). Set i ⊆ i is called robust positively invariant for system (10) under the
feedback ui(t) = −Kixi(t) when

xi(t) ∈ i ⇒ xi(t + 1) ∈ i, −Kixi(t) ∈ i, ∀t, ∀vi(t) ∈ i. (17)

Definition 2 (Maximal robust positively invariant set). Set i,∞ is the maximal robust positively invariant set for system
(10) if it is robust positively invariant and i ⊆ i,∞ holds for all robust positively invariant sets i.

By definition, when the system state is inside a robust positively invariant set initially, it is kept inside that set at all
future times by feedback policy ui(t) = −Kixi(t). Additionally, invariance of i ensures that the system constraints are
satisfied at all future times.

In order to compute the maximal robust positively invariant set, define the admissible set i as

i ∶= {x ∶ x ∈ i, −Kix ∈ i} , (18)

and the one-step controllable set28,29 Ki as

Ki(Ωk,i) ∶= {x ∶ (Ai − BiKi)x ∈ (Ωk ⊖ i)}. (19)

One can compute the maximal robust positively invariant set i,∞ using Algorithm 1.
Now assume that no control policy is given for system (10) and define the one-step controllable set i (Ωk,i) as

i(Ωk,i) ∶= {x ∶ Aix ∈ (Ωk ⊖ i)⊕ (−Bii), Ωk ⊖ i ≠ ∅}. (20)

Then, one can compute control invariant sets by relying on the following definitions.
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Algorithm 1. Maximal robust positively invariant set computation (see Reference 28 or algorithm 11.4 in Reference 29)

Ω0 ← i, Ω−1 ← ∅, k = 0
while Ωk ≠ Ωk−1 do

Ωk+1 ← Ωk ∩ Ki(Ωk,i)
k ← k + 1

end while
return Ωk

Algorithm 2. Maximal robust control invariant set computation (see Reference 28 or algorithm 11.5 in Reference 29)

Ω0 ← i, Ω−1 ← ∅, k = 0
while Ωk ≠ Ωk−1 do

Ωk+1 ← Ωk ∩ i(Ωk,i)
k ← k + 1

end while
return Ωk

Definition 3 (RCI set). Set i ⊆ i is called RCI for system (10) when

xi(t) ∈ i ⇒ ∃ ui(t) ∈ i : xi(t + 1) ∈ i, ∀t, ∀vi(t) ∈ i. (21)

Definition 4 (Maximal RCI set). Set i,∞ is the maximal RCI set for system (10) when i,∞ is a RCI set for the system
and i ⊆ i,∞ for all RCI sets i.

When the system state is inside its RCI set initially, there exists a feasible control sequence which guarantees that the
state remains the invariant set for all future times and therefore, the system constraints are respected. One can compute
the maximal RCI set i,∞ using Algorithm 2.

Sufficient conditions for finite-time termination of Algorithms 1 and 2 can be found in References 30 and 31, respec-
tively. For system (10), Algorithm 1 terminates in a finite time when the invariant set is nonempty, the closed-loop system
is stable, and i is compact.29 Likewise, Algorithm 2 terminates in a finite time when the invariant set is nonempty and
sets i and i are compact.31 Note that these invariant sets may have complex shapes. In order to reduce complexity
of the maximal invariant sets, one may instead use invariant sets that are approximations of the maximal ones, see
Reference 32 for instance.

3 OPTIMAL COMMUNICATION SCHEDULE AND CONTROL CO-DESIGN

In this section, we reformulate and simplify optimization problem (15). To that end, we first use reachability analysis
to derive necessary and sufficient conditions for existence of a feasible control policy. Such conditions depend on the
system dynamics and constraints, and impose restrictions on how often the state measurements must be communicated
to the system. Therefore, these necessary and sufficient conditions on the control design result in necessary and sufficient
conditions on the communication schedule design.

We note that, in general, finding any feasible schedule is very hard since the schedule is a countably infinite set of
integer variables. In order to deal with this issue, we restrict the search space of the feasible schedules. This strategy
simplifies the scheduling design at the expense of optimality. We provide offline and online schedules and prove recursive
feasibility of the online one.

3.1 Necessary and sufficient conditions for feasibility of the communication schedule

In this subsection, we provide a necessary and a sufficient condition for feasibility of a communication schedule, which
can be used to find an approximate solution for the optimization problem (15).
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Any feasible solution of the optimization problem (15) consists of a communication schedule and a set of control
policies that satisfy input and state constraints (15b) and (15c). For a given communication schedule 𝜹, a feasible con-
trol policy for system i exists only if the set i(t) can be kept small enough for all t ≥ 0, that is, the system receives state
measurement updates frequently enough. On the other hand, when the control policy is given, each system has a certain
communication demand to guarantee that its state and input constraints are respected. We next formalize these obser-
vations in order to provide mathematical conditions for the existence of a feasible communication schedule and control
policy.

In case of no bandwidth limitation, each system can receive its state measurement at all times. Therefore, the current
state is known exactly andi(t) = {0}. Then, existence of a feasible control policy for the system i is equivalent to existence
of a RCI set for the system which includes the initial state xi(0). In case the bandwidth is limited, that is, i(t) ≠ {0} for
some t ≥ 0, one can use reachability analysis to verify whether a feasible control policy exists. We formalize this concept
by defining the safe time interval 𝛼i as the longest period of time during which i ∉ 𝛿(t) and a feasible control policy exists
for system i:

𝛼i(i) ∶= max

{
k ∶ ∀xi,0 ∈ i, ∃ui(0), … ,ui(k − 1) ∈ i s.t. Akxi,0 +

k−1∑
j=0

Aj
iBiui(k − j − 1) ∈ i ⊖

( k−1⨁
j=0

Aj
ii

)}
. (22)

Equation (22) states that, if xi,0 ∈ i and i ∈ 𝛿(0), then there exists an input sequence which guarantees xi(t) ∈ i for
all t ≤ 𝛼i(i). Consequently, if i is robustly control invariant and if i ∈ 𝛿(t) at least once during every 𝛼i consecutive time
instants, then a feasible control policy exists such that xi(t) ∈ i for all t. In the rest of the paper, we use 𝛼i ∶= 𝛼i(i,∞)
where i,∞ is the maximal RCI set for the system since any RCI set i is a subset of i,∞, that is, the maximal set includes a
larger set of feasible states. We remark that inequality 𝛼i(i,∞) ≥ 𝛼i(i) typically holds. This inequality implies that using
the maximal control invariant set for the computation of 𝛼i, that is, 𝛼i(i,∞), yields the longest allowable transmission
interval for the system.23

The set of safe time intervals {𝛼1, … , 𝛼q} can be used to formalize a necessary condition which needs to be satisfied
by any feasible communication schedule 𝜹. Let us define the times when the system i receives state measurements as
ti,j(𝜹) < ti,j+1(𝜹), such that

i ∈ 𝛿(t) ⇔ t = ti,j(𝜹), j ≥ 0. (23)

Then,

ti,j+1(𝜹) − ti,j(𝜹) ≤ 𝛼i, ∀j ≥ 0, i ∈ 
q
1 , (24)

is a necessary condition for any feasible schedule 𝜹 as pointed out by the following lemma.

Lemma 2. Any schedule 𝜹 which is feasible for optimization problem (15) satisfies (24).

Proof. By contradiction, assume that i ∈ 
q
1 and j ≥ 0 exist such that ti,j+1(𝜹) − ti,j(𝜹) > 𝛼i and for any xi(ti,j(𝜹)) ∈ i,∞,

there exists an input sequence that guarantees xi(ti,j+1(𝜹)) ∈ i,∞ regardless of the unknown disturbances. This implies
𝛼i ≥ ti,j+1(𝜹) − ti,j(𝜹) by definition (22) which is contradictory. ▪

We note that in (24) no constraint is imposed on ti,0(𝜹) since its value depends on the initial values of the state xi(0)
and the state prediction x̂i(0).

In the following lemma, we specify a sufficient condition for feasibility of a communication schedule.

Lemma 3. Assume that all systems have access to their initial states, that is, x̂i(0) = xi(0) for all i ∈ 
q
1 . Then, any

communication schedule 𝜹 which satisfies

ti,0(𝜹) ≤ 𝛼i, ti,j+1(𝜹) − ti,j(𝜹) ≤ 𝛼i, ∀j ≥ 0, i ∈ 
q
1 , (25)

is a feasible schedule for the optimization problem (15).
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Proof. For each system i, the initial state is known and there exists a control sequence such that xi(t) ∈ i,∞ for all t ≤ 𝛼i
by definition (22). Since ti,0(𝜹) ≤ 𝛼i, the measured state xi(ti,0(𝜹)) is inside the set i,∞. Given xi(ti,0(𝜹)) ∈ i,∞, a control
sequence starting from ti,0(𝜹) exists such that xi(t) ∈ i,∞ for all t ≤ ti,0(𝜹) + 𝛼i. As a result, xi(ti,1(𝜹)) ∈ i,∞ since ti,1(𝜹) ≤
ti,0(𝜹) + 𝛼i. Therefore, there exists a control sequence such that xi(t) ∈ i,∞ for all t ≥ 0 by induction. ▪

Lemma 3 specifies the sufficient condition (25) for a feasible schedule. However, as pointed out before, finding the
optimal communication schedule subject to this sufficient condition is very difficult since the problem is combinatorial
with a countably infinite set of integer variables. We note that not only finding the optimal schedule is very difficult, but
it may also be difficult to find any feasible schedule.

While finding the optimal communication schedule 𝜹 which satisfies (25) is very difficult in general, one can use
available scheduling algorithms to find feasible schedules and uses these schedules to find a suboptimal schedule. To that
end, we search for a feasible schedule for the instance I ∶= {𝛼1, … , 𝛼q} of the WSP,33 which is equivalent to searching for
a schedule 𝜹 which respects (25).21 Necessary and sufficient conditions for existence of a feasible schedule for an instance
of the WSP are based on the density 𝜌(I), defined as

𝜌(I) ∶=
q∑

i=1

1
𝛼i
. (26)

Given an instance of the WSP, inequality 𝜌(I) ≤ n𝛿 is a necessary and 𝜌(I) ≤ 0.5n𝛿 is a sufficient condition for the
existence of a feasible schedule for the WSP.33 There are polynomial time algorithms which find feasible schedules for
instances of the WSP, for example, when 𝜌(I) ≤ 0.5n𝛿 holds.34,35 One can also find a feasible schedule for an instance of the
WSP, if it exists, by formulating an optimization problem and using mixed-integer solvers such as CPLEX, Gurobi, etc.21

Remark 2. If 𝜹 is a feasible schedule for the WSP, then all shifted versions of it, that is,

𝜹k ∶= (𝛿(k), 𝛿(k + 1), 𝛿(k + 2), …), ∀k ∈ N, (27)

are also feasible schedules for the WSP.

Remark 2 can be used to construct a set of schedules which respect (25). In the following section, we propose a heuristic
which finds a suboptimal feasible communication schedule, based on a given nonempty set of feasible schedules

S𝛿 ⊆ {𝜹 ∶ ti,0(𝜹) ≤ 𝛼i, ti,j+1(𝜹) − ti,j(𝜹) ≤ 𝛼i, ∀j ≥ 0, i ∈ 
q
1}. (28)

Note that the optimality gap in each example depends on the set of feasible schedules S𝛿 . If one increases cardinality of
this set by adding more feasible schedules to it, the optimality gap might reduce, but the computation expense increases.
While it is hard to evaluate the optimality gap exactly, a rather conservative lower bound for the cost can be obtained by
assuming that the communication channel is unconstrained, as we will discuss with some examples in Section 4.

3.2 Offline communication schedule and control design

In this subsection, we assume that a feasible communication schedule is given and we formulate an optimal control design
problem based on this schedule. This formulation is used in the following subsection to jointly design the communication
schedule and the control policy.

Assume that a schedule 𝜹 is given which satisfies (25); furthermore, assume that the initial state for the system i is
inside the maximal RCI set for that system and this initial value is known to the controller, that is, x̂i(0) = xi(0) ∈ i,∞.
Then, one can find the optimal control policy for the system i which guarantees the state constraint satisfaction by solving(
J

avg
i (xi,0,i, 𝜹), J

b
i (xi,0,i, 𝜹)

)
∶= lex min

Ui

(
lex max

Vi
Ji(X̃i,Ui)

)
, (29a)

s.t. x̃i(t + 1) =

{
xi(t + 1) if i ∈ 𝛿(t + 1)
Aix̃i(t) + Biui(t) if i ∉ 𝛿(t + 1)

, t ∈ ∞
0 , (29b)
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xi(t + 1) = Aixi(t) + Biui(t) + vi(t), t ∈ ∞
0 , (29c)

x̃i(t, xi,0,Ui,i, 𝜹) ∈ i,∞ ⊖

(𝛾i(𝜹,t)−1⨁
j=0

Aj
ii

)
, ∀t ≥ 0, (29d)

𝛾i(𝜹, t) =

{
t, if t < ti,0(𝜹)
min{t − ti,j(𝜹) ≥ 0 ∶ j ≥ 0}, if t ≥ ti,0(𝜹)

, (29e)

ui(t) ∈ i, ∀t ≥ 0, (29f)

vi(t) ∈ i, t ∈ ∞
0 , (29g)

xi(0) = x̃i(0) = xi,0, (29h)

recursively at t = 0, ti,0(𝜹), ti,1(𝜹), … , where variable 𝛾i(𝜹, t), defined in (29e), counts how many time steps the system i has
evolved open loop. In (29d), the RCI set i,∞ is tightened, similarly to (15c), to account for the unknown disturbances and
guarantee satisfaction of xi(t) ∈ i,∞ ⊆ i. The set i can be defined as either {0} or i depending on the design scenario.
Since the future states are unknown, the predicted state x̃i(t) is updated with the worst-case scenario trajectory xi(t) at the
update time instants.

Define U⋆
i as the minimizer of the above optimization problem. Then, if xi,0 = x̂i,0 ∈ ∞ the control sequence U⋆

i
guarantees xi(t) ∈ i,∞ for all t ≤ ti,0. Furthermore, the recursive solution of (29) guarantees xi(t) ∈ i,∞ for all t ≥ 0, as
pointed out in the following lemma.

Lemma 4. The optimization problem (29) is recursively feasible and its recursive solution guarantees xi(t) ∈ i,∞ for
all t ≥ 0.

Proof. We first prove that the optimization problem (29) is initially feasible. Inclusion x̃i(0) ∈ i,∞ holds by construc-
tion and since the schedule 𝜹 satisfies (25), the inequality ti,0 ≤ 𝛼i holds by assumption. Therefore, the control sequence
ui(0), … ,ui(ti,0 − 1) ∈ i exists that satisfies (29d) for all t ≤ ti,0 based on the definition (22). Satisfaction of (29f) and (29d)
in this period and Lemma 1 imply that xi(ti,0) ∈ i,∞. Since x̃i(ti,0) = xi(ti,0) ∈ i,∞, the control sequence ui(ti,0), … ,ui(ti,1 −
1) ∈ i exists that satisfies (29d) for t ≤ ti,1 and x̃i(ti,1) = xi(ti,1) ∈ i,∞. This reasoning implies that the problem is initially
feasible by induction.

The feasible solution of the optimization problem also guarantees xi(t) ∈ i,∞ for all t ≤ ti,0 based on definition of 𝛼i
and the assumption xi(0) ∶= xi(0) ∈ i,∞. Assume that the input u⋆

i (0), … ,u⋆
i (ti,0 − 1) has been applied to the system,

orderly; since i ∈ 𝛿(ti,0), the state xi(ti,0) is measured and available to the controller. One can define xi,0 ∶= xi(ti,j) in (29)
and solve the problem recursively at time instants ti,j for all j ≥ 0 which guarantees xi(t) ∈ i,∞ ⊆ i for all t ≥ 0. ▪

Using the cost function (29a), one can find an optimal feasible schedule by solving

lex min
𝜹

( q∑
i=1

J
avg
i (xi(0),i, 𝜹),

q∑
i=1

J
b
i (xi(0),i, 𝜹)

)
, (30a)

s.t. 𝜹 ∈ S𝛿, (30b)

where S𝛿 , specified in (28), is a finite set of feasible schedules for the instance {𝛼1, … , 𝛼q} of the WSP. Note that opti-
mization problem (30) is not hard to solve since the optimal solution can be found by enumerating among members of
the set S𝛿 . One can use the optimal solution of (30) as the feasible schedule in the optimization problem (29) in order to
calculate the optimal control policy. Note that the solution of (29) needs to get updated based on the state measurements
in order to guarantee xi(t) ∈ i,∞ for all t ≥ 0. This scheme is summarized in Algorithm 3.

Remark 3. Note that in Algorithm 3 the schedule 𝜹
⋆ is computed inside the communication scheduler, see Figure 1. At

time k = 0, each controller i has access to xi(0) by assumption, and solves the optimization problem (29) to obtain the
optimal control trajectory u⋆

i (0),u⋆
i (1), … . Each controller i applies u⋆

i (k) to system i at time k. At each time k ≥ 1, if
i ∈ 𝛿⋆(k), then controller i receives a new state measurement, in which case it solves the optimization problem (29) with
the new initial condition xi,0 = xi(k) and updates u⋆

i (k),u⋆
i (k + 1), … .
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Algorithm 3. Offline communication scheduling and online control design using the optimization problem (30)

Offline:
Calculate the safe time interval 𝛼i using∼(22) for all i ∈ 

q
1

Find feasible schedules for the instance {𝛼1,… , 𝛼q} of the WSP and define the set S𝛿 as in (28)
Solve the optimization problem (30) to find the offline schedule 𝜹

⋆

Solve the optimization problem (29) inside the controller i which yields u⋆
i (t), for all i ∈ 

q
1

Pass u⋆
i (0) to the actuator i, for all i ∈ 

q
1

Online:
while k ≥ 1 do

for i ∈ 𝛿⋆(k) do
Transmit xi,0 = xi(k) to the corresponding controller
Solve (29) and update u⋆

i (t) accordingly
end for
Pass u⋆

i (k) to the actuator i, for all i ∈ 
q
1

Assign k ← k + 1
end while

Remark 4. The optimization problem (29) has several similarities and differences with the H-RCI approach for NCSs with
TS.13 Tube-based MPC is used to design controls for an uncertain linear time-invariant discrete-time system with state and
input constraints in both (29) and Reference 13. Furthermore, both approaches use invariant sets to determine acceptable
upper bounds on transmission intervals, that is, 𝛼i in this paper and H in Reference 13. However, tube-based MPC is used
in (29) only to guarantee that the system remains inside the admissible set, while Reference 13 aims at asymptotically
stabilizing the system to a smaller set, for example, the minimal robust positively invariant set. This difference is reflected
in slight but important differences in the tube-based MPC formulations, such that the two approaches are similar in
philosophy but solve different problems.

The optimal solution of (30) is an offline schedule since it is designed initially and it does not get updated afterwards
based on the available information on the state of the systems. The optimal solutions of (30) and (29) return an optimized
communication schedule and control which is based on a specific disturbance sequence for the system; however, the
disturbance sequence is neither controllable nor known a-priori. Therefore, at each time instant the state measurements
can be used to update the communication schedule and control in order to reduce the cost in (30). Note that in the
optimization problem (30), we assumed that x̂i(0) = xi(0) for all i ∈ 

q
1 which cannot be assumed in the following time

instants and therefore, one cannot solve the optimization problem recursively for the sake of finding an communication
schedule. This issue is addressed next.

3.3 Online communication schedule and control co-design

The offline communication schedule is only optimal for the worst-case disturbance; however, the actual disturbance is
in general different, such that the offline solution is suboptimal. In this subsection, in order to eliminate this deficiency,
we detail how the offline communication schedule design can be used to construct an online schedule with improved
performance.

In the previous subsection, the communication schedule is fixed and in order to update the control sequence, one only
needs to solve (29) for n𝛿 of the systems at each time instant t > 0. However, each system i might be allowed to wait for
longer than 𝛼i time instants to receive a new measurement update without violating the constraints, depending on the
disturbances that are actually injected to the system during this time. As a result, the current state measurement for each
system can be used to determine whether the state measurement update for that system can be postponed. This point is
clarified by the following example.

Example 1 (Online scheduling constraints). Consider a scalar system described by (10) where Ai = Bi = 1, i = i =
{x ∶ |x| ≤ 1}, and  = {x ∶ |x| ≤ 0.1}. In this system, i,∞ = i and, for example, ui(0) = −xi(0) and ui(t) = 0 for all t > 0
is a feasible control policy that preserves the invariance for a period of time. One can show that in this case, 𝛼i = 10 and
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F I G U R E 2 The open-loop evolution in Example 1. The system is simulated with the initial condition x(0) = 1 and the designed
feasible control policy in the example. The disturbance sequence is assumed to be random with a uniform distribution. The system is
simulated 10,000 times and the first figure shows the percentage of the number of times in which the state constraint is violated before time t.
The second figure shows the state and the state constraints over time in these experiments

a feasible offline schedule should update the system i no later than t = 10. Now assume that at t = 8, the system i has
not received a state measurement update yet and the state measurement shows that xi(8) = 0.25. While according to the
constraints at t = 0, the scheduler should transmit a state measurement update to the system i no later than two seconds,
that is, t ≤ 𝛼i = 10, the new measurement at t = 8 can be used to show that the system i remains in i,∞ at least until t ≤ 15.
We have simulated this system 10,000 times with different uniformly distributed random disturbances. The simulation
results in Figure 2 indicate that while 𝛼i = 10, in less than 0.2% of the experiments, the system needed a measurement
update before t = 30. In this case, the average time for violating the state constraint is 317.8 which is much greater than
the minimum time, that is, 𝛼i + 1. Nevertheless, we note that this average time might be much closer to 𝛼i + 1 when the
system is unstable.

Example 1 illustrates that the current state measurement can be used to find less restrictive constraints on the
communication schedule. Next, we formalize the state measurement update deadline for each system i based on the
current state measurement. Assume that the last measurement update for the system i took place at t0 ≤ 0 and define
U⋆

i ∶= (u⋆
i (t0),u⋆

i (t0 + 1), …) as the optimal solution to (29) solved at time t0 for a feasible schedule 𝜹. Furthermore,
assume that the system is scheduled to receive the following state measurement update at t1 ≥ 0. Note that the optimal
control policy cannot change before t1 ≥ 0 since the controller has received no additional information after time t0. Based
on the current state measurement update xi(0), the measurement update deadline 𝛽i(xi(0),U⋆

i ), that is the time until which
xi(t) is guaranteed to remain in i,∞ when the previously calculated optimal control policy is applied, can be defined as

𝛽i ∶= 𝛽i(xi(0),U⋆
i ) = max

{
k ∈ N ∶ Akxi(0) +

k−1∑
j=0

Aj
iBiu⋆

i (k − j − 1) ∈ i,∞ ⊖

( k−1⨁
j=0

Aj
ii

)}
. (31)

Note that 𝛽i ≥ t1 since the control sequence U⋆
i guarantees xi(t) ∈ i,∞ for all t0 ≤ t ≤ t1. Therefore, one can use 𝛽i to

postpone the state measurement update for the system i and reduce the scheduling conservativeness.
We propose an online communication schedule and control co-design in which the schedule constraints are adjusted

based on the current state measurements. Since the communication schedule changes, in general, at each time instant in
an online communication schedule design, one needs to evaluate (29a) for all i ∈ 

q
1 and at each time instant in order to

pick the optimal schedule. As a result, the optimization problem (29) should be solved at each time instants, rather than
only at time instants at which the system i has received a state measurement update. Therefore, next we modify (29) to be
able to evaluate its cost function at all time instants. Note that the optimal control policy U⋆

i can not be modified during
the open-loop evolution periods since the controller has received no new information. Therefore, in order to respect this
limitation, we reformulate (29) as(

J̃avg
i (𝜁), J̃b

i (𝜁)
)

∶= lex min
Ui

(
lex max

Vi
Ji(X̃i,Ui)

)
, (32a)
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s.t. x̃i(t + 1) =

{
xi(t + 1) if i ∈ 𝛿(t + 1)
Aix̃i(t) + Biui(t) if i ∉ 𝛿(t + 1)

, t ∈ ∞
0 , (32b)

xi(t + 1) = Aixi(t) + Biui(t) + vi(t), t ∈ ∞
0 , (32c)

x̃i(t, xi,0,Ui,i, 𝜹) ∈ i,∞ ⊖

(𝛾i(𝜹,t)−1⨁
j=0

Aj
ii

)
, ∀t ≥ 0, (32d)

𝛾i(𝜹, t) =

{
t, if t < ti,0(𝜹)
min{t − ti,j(𝜹) ≥ 0 ∶ j ≥ 0}, if t ≥ ti,0(𝜹)

, (32e)

ui(t) ∈ i, ∀t ≥ 0, (32f)

ui(t) = u⋆,prv
i (t), ∀t < ti,0(𝜹), (32g)

vi(t) ∈ i, t ∈ ∞
0 , (32h)

xi(0) = xi,0, (32i)

x̃i(0) = x̂i,0, (32j)

where 𝜁 ∶= (xi,0, x̂i,0,i, 𝜹,U⋆,prv
i ) and U⋆,prv

i is the optimal control policy calculated at the previous time instant. U⋆,prv
i

is used in (32g) to preserve the latest optimal control policy until a new state measurement update arrives. In (32d) the
invariant set is tightened to account for the unknown disturbances starting from the time at which the system receives
a new state measurement update. Variables xi,0 and x̂i,0 are the current state and current state prediction, respectively,
which in general have different values, unlike (29).

Next, we formulate (30) using the measurement update deadline 𝛽i defined in (31) and the cost function (32) as

lex min
𝜹

( q∑
i=1

J̃avg
i (𝜁),

q∑
i=1

J̃b
i (𝜁)

)
, (33a)

s.t. 𝜹 ∈ S𝛿, (33b)

ti,0(𝜹) ≤ 𝛽i(xi(0),U⋆,prv
i ), ∀i ∈ 

q
1 , (33c)

x̂i(0) =

{
xi,0 if i ∈ 𝛿(0)
x̂i,0 if i ∉ 𝛿(0)

, ∀i ∈ 
q
1 , (33d)

where U⋆,prv
i ∶= u⋆,prv

i (−1),u⋆,prv
i (0), … , is the optimal control policy at the previous time instant, xi,0 is the current mea-

sured state, and x̂i,0 is defined as Aix̂i(−1) + Biu⋆,prv
i (−1), that is the state prediction at the current time instant. Similarly to

(30b), the constraint (33b) is considered to limit the scheduling search space and reduce the difficulty of the problem. Note
that while according to the constraints (33b) and (33c) the system i is scheduled to receive a state measurement update
in the min(𝛼i, 𝛽i) following time instants, this update can get postponed later on, since the following state measurements
might indicate that the system does not need an update. In the optimization problem (33), the previous optimal inputs
are needed, therefore, one could use (30) assuming that x̂i(0) ∶= xi(0) at the first iteration to start the online co-design
using (33) at the following time instants. This scheme is summarized in Algorithm 4.

Remark 5. Note that in Algorithm 4 the optimal schedule 𝜹
⋆ is updated inside the communication scheduler at each

time k ≥ 1, see Figure 1. At time k = 0, each controller i has access to xi(0) by assumption, and solves the optimiza-
tion problem (29) to obtain the optimal control trajectory u⋆

i (0),u⋆
i (1), … . Each controller i applies u⋆

i (k) to system i at
time k. At each time k ≥ 1, problem (32) is solved inside by scheduler using the information available to the controller.
This is necessary in order to define the cost to be optimized in problem (33) which yields the optimal schedule update
𝛿⋆(0). If i ∈ 𝛿⋆(0), then controller i also solves problem (32) with the new initial condition x̂i,0 = xi,0 = xi(k) and updates
u⋆

i (k),u⋆
i (k + 1), … .
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Algorithm 4. Online communication scheduling and control design using the optimization problem (33)

Offline:
Calculate the safe time interval 𝛼i using (22) for all i ∈ 

q
1

Find feasible schedules for the instance {𝛼1,… , 𝛼q} of the WSP and define the set S𝛿 as in (28)
Solve the optimization problem (30) inside controller i which yields u⋆

i (t), for all i ∈ 
q
1

Assign x̂i,0 ← x̃i(1), for all i ∈ 
q
1

Pass u⋆
i (0) to the actuator i, for all i ∈ 

q
1

Online:
while k ≥ 1 do

Measure xi(k) and assign xi,0 ← xi(k) for all i ∈ 
q
1

Solve the optimization problem (33) which yields 𝛿⋆(t) and u⋆
i (t)

Assign x̂i,0 ← Aix̂i(0) + Biu⋆
i (0), for all i ∈ 

q
1 (to be fixed)

for all i ∈ 𝛿⋆(0) do
Transmit xi(k) from the sensor to the controller
Consider x̃i(0) = xi,0 = xi(k), solve (32), and update u⋆

i (t) accordingly
end for
Pass u⋆

i (k) to the actuator i, for all i ∈ 
q
1

Assign k ← k + 1
end while

Remark 6. Assume 𝜹
b ∶= 𝛿b(0), 𝛿b(1), … is a schedule which is feasible for the optimization problem (30). Then, the

online communication schedule 𝜹 ∶= 𝛿b(k), 𝛿b(k + 1), … is a feasible schedule for the optimization problem (33) where
k denotes the time at which (33) is solved.

Lemma 5. Optimization problem (33) is recursively feasible and any feasible solution for this problem is also feasible
for (15).

Proof. The optimization problem is initially feasible based on Lemma 4. Consider the optimal solution of (33) as
(X̂⋆

,U⋆, 𝜹⋆). We will prove next that this solution satisfies constraints (15b) and (15c). The constraint (15b) holds because
U⋆ respects (32f). Additionally, the constraint (33c) guarantees that each system i receives a state measurement update
before t ≤ 𝛽i which indicates xi(t) ∈ i,∞ for all t ≤ 𝛽i based on (31). Once the system i received a state measurement
update, which happens at t ≤ 𝛽i, Lemma 4 and (33b) imply that the solution is recursively feasible and xi(t) ∈ i,∞ also
holds afterwards. Satisfaction of xi(t) ∈ i,∞ for all t ≥ 0 in turn implies that (15c) holds based on Lemma 1. ▪

Remark 7. In the optimal communication schedule and control design problems (30) and (33), one can consider a linear
state feedback, that is, ui(t) = −Kix̃i(t), where the optimal gain Ki is the solution to the Riccati equation. In this case, one
should use the maximal robust positively invariant set i,∞ instead of the maximal control invariant set i,∞ and calculate
the corresponding safe time interval 𝛼i and measurement update deadline 𝛽i.

Remark 8. Assume that there exists a perfect schedule for instance {𝛼1, … , 𝛼q}, that is, a schedule in which each system
communicates through a single channel. Then, every system can be assigned to a communication channel. In the presence
of n𝛿 communication channels, this implies that optimization problem (33) can be separated into n𝛿 smaller disjoint
optimization problems, that is, one for each channel.

Remark 9. The proposed joint communication schedule and control design in the optimization problems (30) and (33)
can also cover packet loss under the assumption that at most nL

i packets could be lost for system i over any time interval
of length 𝛼i. Consider, for example, the case of two systems with 𝛼1 = 3 and 𝛼2 = 5, and assume that at most one packet
may be lost during each four consecutive transmissions. Then we have nL

1 = 1, since 𝛼1 < 4; and nL
2 = 2, since 𝛼2 < 2 ⋅ 4.

Under this assumption for the packet loss distribution, schedulability of (30) and (33) is equivalent to existence of a
schedule for instance I = {�̃�1, … , �̃�q} of the WSP where �̃�i ∶= 𝛼i − nL

i , for all i.21 In (30), the strategy consists in updating
the schedule such that the systems which lost a packet are immediately rescheduled for communication, that is, the sched-
ule is shifted back by one time instant whenever a packet is lost. Since in the absence of packet losses each controller i is
scheduled to receive a state measurement at least once during any �̃�i consecutive time instants, and this transmission may
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be postponed at most by nL
i time instants in the shifted schedule, one has the guarantee that a measurement is received

at least once every 𝛼i consecutive time instants. In turn, this guarantees that the state remains inside the admissible set.
While the modified version (30) guarantees feasibility also in case of packet losses, it does not account for optimality.

Similarly to the case of no packet losses, one can then use a modified version of (33), where 𝜹 is defined using �̃�i instead of
𝛼i, and the schedule is updated by solving (33) using 𝛽 i ∶= 𝛽i − mL

i (k) instead of 𝛽i, where mL
i (k) is the number of packets

that can be lost over the time interval [k, k + 𝛽i − 1], given the packets lost in the past. In order to clarify this last aspect,
consider the case of two systems having 𝛽1 = 3 and 𝛽2 = 5 at a given time instant k; assume that at most one packet may
be lost during each four consecutive transmissions, and assume that only one packet was lost at time k − 1. Then we have
mL

1 = 0, since having lost a packet at time k − 1 implies that no packet can be lost in the interval [k, k + 2] = [k, k + 𝛽1 − 1].
Similarly, one can verify that mL

2 = 1, since at most one packet can be lost in the interval [k + 3, k + 7], which entails that
at most one packet can be lost in the interval [k, k + 4] = [k, k + 𝛽2 − 1].

4 NUMERICAL SIMULATION

In this section, we provide several numerical examples to show and compare the effectiveness of the proposed optimal
scheduling and control design techniques.

In Example 2, first we compare the communication schedule and control obtained from the optimization problems
(30) and (33) when the control is computed by a static feedback gain. Then, we compare these designs when the control
is optimized as per (32). In Example 3, we increase the disturbance levels and repeat the comparison between (30) and
(33) for the optimized control case. In Example 4, we compare the solutions of the optimization problems (30) and (33)
when the control is derived to minimize the cost for the worst-case disturbance.

Example 2 (Networked control vehicles). Consider five remotely controlled vehicles, each considered as a point mass
with a double integrator model as

xi(t + 1) = Aixi(t) + Biui(t) + Fivi(t), (34)

with

Ai =

[
1 0.1
0 1

]
, B = F =

[
0.005
𝜅i

]
, 𝜅i = 0.1i, ∀i ∈ 5

1 , (35)

where xi(t) contains the position and the speed of the vehicle, ui(t) is the input acceleration, and vi(t) is a matched distur-
bance. Consider i = {u ∈ R ∶ |u| ≤ 4} and i = {Fiv ∈ R2 ∶ |v| ≤ vi} with (v1, … , v5) = (0.90, 0.70, 0.50, 0.28, 0.22) as
admissible sets for the inputs and the disturbances, respectively. Furthermore, consider the admissible sets for the states as

i =

{
x ∈ R

3 ∶

[
− 1
− 5

]
≤ x ≤

[
1
5

]}
. (36)

and the cost function matrices

Qi =

[
5 0
0 1

]
, Ri = 0.1, ∀i ∈ 5

1 . (37)

Also assume that only one vehicle can communicate at each time instant, that is, n𝛿 = 1. We consider zero as the
initial state and simulate the NCS for t = 0, … , 500.

First, consider ui(t) = −Kix̃i(t) as an additional constraint to the optimization problems (29) and (32) where Ki is the
optimal feedback gain from the corresponding Riccati equation, see Remark 7. In this case, the safe time intervals are

{𝛼1, … , 𝛼5} = {4, 5, 6, 9, 10}, (38)

and a feasible cyclic schedule for the WSP with instance {4, 5, 6, 9, 10}, is

𝜹
1 ∶= 1, 2, 3, 4, 1, 2, 3, 5, … . (39)
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Since 𝜹
1 has period 8, one can create a set of feasible schedules as 1

𝜹
∶= {𝜹1

1, 𝜹
1
2, … , 𝜹1

8}, where we define 𝜹
1
k ∶=

𝛿1(k), 𝛿1(k + 1), … as a shifted version of 𝜹1 for any k ∈ 8
1 , such that 𝜹1

1 = 𝜹
1.

In order to investigate sensitivity of the proposed approach to the set of the set of feasible schedules, we also consider

𝜹
2 ∶= 1, 2, 3, 1, 4, 5, 2, 1, 3, 4, 1, 2, 5, 3, … , (40)

as another cyclic feasible schedule with period 14 for the problem and the set of the feasible schedules 2
𝜹
∶=

{𝜹2
1, 𝜹

2
2, … , 𝜹2

14}, that is the set of shifted versions of 𝜹2.
Next, we provide simulation results for five cases:

• Case 1: solving (30) when 𝜹 ∶= 1
𝜹

;
• Case 2: solving (33) when 𝜹 ∶= 1

𝜹
;

• Case 3: solving (30) when 𝜹 ∶= 2
𝜹

;
• Case 4: solving (33) when 𝜹 ∶= 2

𝜹
;

• Case 5: an ideal communication scenario where all vehicles are always connected;

The simulation results are shown in Figure 3. In these simulations, the disturbances are generated as uniformly
distributed random values and kept the same in different cases for a fair comparison.

Since the cost functions in (29) and (32) are defined based on the predicted state, in the figure we represent a quadratic
cost based on the actual states, that is,

quadratic cost =
t∑

k=0

5∑
i=1

xi(k)⊤Qixi(k) + ui(k)⊤Riui(k). (41)
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F I G U R E 3 Simulation of the vehicles for different cases in Example 2 where the control is designed based on a nonvarying feedback
gain; the states and inputs of all vehicles are augmented and the distribution of their absolute values are shown in the first row; the second
row shows the average communication ratio for the simulated cases and the cost function for each case
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F I G U R E 4 Simulation of the vehicles for different cases in Example 2 where the control is designed based on the MPC; the states and
inputs of all vehicles are augmented and the distribution of their absolute values are shown in the first row; the second row shows the
average communication ratio for the simulated cases and the cost function for each case

This figure indicates that the cost function for the offline schedules, that is, Cases 1 and 3, are much higher than the
cost for the corresponding online schedules, that is, Cases 2 and 4. As expected, the cost for Case 5 is better than the other
cases since the scheduling limitation is not present in this scenario. However, the performance of the online schedule is
not dramatically worse, considering that communication is reduced by a factor 5. The distribution of the absolute value
of the states of the vehicles and the inputs show that the constraints are respected; furthermore, it indicates that the
performance of the offline and online schedules are not very sensitive to the schedule or the set of schedules that were
used in the scheduling design.

Now consider the same NCS without considering ui(t) = −Kix̃i(t) as an additional constraint in the optimization
problems (29) and (32), which we call the MPC design. In this case, the safe time intervals are

{𝛼1, … , 𝛼5} = {11, 9, 9, 11, 12}. (42)

Since the safe time intervals have increased in this case, 𝜹1 and 𝜹
2 are feasible offline schedules for the network. The

simulation results for the same cases are provided in Figure 4 where we have considered i = {0} for all i ∈ 5
1 . In this

simulation, the disturbances are the same as in the previous one for sake of comparison.
Similar to the Figure 3, the cost function in Figure 4 shows that the cost function for the online schedules, that is,

Cases 2 and 4, are improved in comparison to the offline schedules, that is, Cases 1 and 3. Note that the cost function in
the MPC cases are rather similar to ones in the constant-gain state feedback cases.

Example 3. In order to have a more critical scenario for the MPC cases, consider the previous example with (v1, … , v5) =
(2.5, 1.6, 0.9, 0.4, 0.3) as the disturbance bounds which results in the safe time intervals

{𝛼1, … , 𝛼5} = {4, 5, 6, 9, 10}. (43)

We consider zero as the initial state and simulate the NCS for t = 0, … , 500. The disturbances are generated randomly
with uniform distributions and reused in different cases for sake of comparison. Since these safe time intervals are the
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F I G U R E 5 Simulation of the vehicles for different cases in Example 3 where the control is designed based on the model predictive
control; the states and inputs of all vehicles are augmented and the distribution of their absolute values are shown in the first row; the second
row shows the average communication ratio for the simulated cases and the cost function for each case

same as the cases with the constant feedback gain in the previous example, the same schedules are also feasible in this
example. Note that in this case, the linear feedback results in lower or zero safe time intervals which results in an infeasible
scheduling problem.

The simulation results are presented in Figure 5.
As in the previous example, this figure shows that the online schedules, that is, Cases 2 and 4, have better performances

than the offline schedules, that is, Cases 1 and 3. The increase of the noise levels has increased the costs. One can also
observe that the average communication ratio in Cases 2 and 4 for vehicle 1 have increased in comparison to the previous
example since the noise level for this vehicle is increased more than other ones.

In the following, we provide an example to illustrate the results in case i ≠ {0}. Since this optimization problem
is inherently difficult to solve, we have selected an extremely simple case which allows us to easily interpret the results.
We also note that, since min-max problems are very difficult to solve, for nontrivial examples the infinite horizon opti-
mization problem is often replaced by a finite horizon one. In addition, even for finite horizons, it is customary to rely on
formulations which only approximately solve the min-max problem. While a thorough discussion on these methods is
out of the scope of this paper, we only remind that any such formulation can be used in combination with our approach.

Example 4. Consider a network with three systems described by

xi(t + 1) = xi(t) + ui(t) + vi(t), (44)

where xi(t) ∈ i = {x ∶ |x| ≤ 1}, ui(t) ∈ i = {u ∶ |u| ≤ 1}, and vi(t) ∈ i = {v ∶ |v| ≤ vi} with v1 = 0.4, v2 = 0.22, and
v3 = 0.18. We consider zero as the initial state and simulate the NCS for t = 0, … , 500. The disturbances are generated
randomly with uniform distributions and reused in different cases for sake of comparison. In this example, i,∞ = Xi and
𝛼1 = 2, 𝛼2 = 4, and 𝛼3 = 5. One can verify that

𝜹
3 ∶= 1, 2, 1, 3, … , (45)

is a feasible offline schedule for the optimization problem. Assume that i = i and consider

3
𝛿
∶= {𝜹3

0, 𝜹
3
1, 𝜹

3
2, 𝜹

3
3}, (46)
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F I G U R E 6 Simulation of the vehicles for different cases in Example 4; the first figure from the left shows the average communication
ratio, the second figure shows the quadratic cost, as in (41), and the last figure shows the distribution of the worst-case cost, as defined in
(48). The means of the worst-case cost for Cases 1 and 2 are -6.2291 and −6.7520, respectively

as the set of feasible schedules. For simplicity, consider Qi = 1 and Ri = 0 for all i = 1, 2, 3; this implies that the optimal
control law, using either MPC or LQR, is

u⋆
i (t) =

{
− xi(t) if 𝛿i(t) = i,
0 otherwise.

(47)

For any 𝜹 ∈ 3
𝛿

, one can verify that J̃avg
1 = J

avg
1 = 0.8, J̃avg

2 = J
avg
2 = 1.452, and J̃avg

3 = J
avg
3 = 0.972. Next, we provide

simulation results for two cases:

• Case 1: solving (30) when 𝜹 ∶= 3
𝜹

;
• Case 2: solving (33) when 𝜹 ∶= 3

𝜹
;

Figure 6 shows the simulation results for the offline and the online schedules. The worst-case cost in the figure is
defined as

worst-case cost =
∞∑

k=t

3∑
i=1

(x̃i(k)⊤Qix̃i(k) − J̃b
i ). (48)

Note that the quadratic cost in Case 1 is less than the cost in Case 2. This is expected since in Case 2, the online
scheduling aims to minimize the cost in the worst-case scenario. The worst-case cost shows that the online schedule is in
fact better than the offline one. One can also observe that the online schedule communicates more often with system 1;
this results in longer open-loop periods for systems 2 and 3.

5 CONCLUSIONS

In this paper, in order to jointly design communication schedule and control for constrained NCSs, we for-
mulated an optimization problem with a quadratic cost function. The joint design of the schedule and con-
trol prevents unnecessary performance loss of disjoint design schemes. On the one hand, this scheme exploits
the periodic side of the designed communication schedule to guarantee satisfaction of the input and state con-
straints and on the other hand, it adjusts the design based on the state measurements which improves the
performance.

One can extend this work by considering a more general network in which both the sensor-controller and the
controller-actuator links are constrained and independent. Furthermore, the proposed framework could be extended to
the case of systems with coupled constraints/dynamics.
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